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C O N S P E C T U S

During the 1980s, advances in the abilities to perform computer
simulations of chemical and biomolecular systems and to calcu-

late free energy changes led to the expectation that such methodol-
ogy would soon show great utility for guiding molecular design.
Important potential applications included design of selective recep-
tors, catalysts, and regulators of biological function including enzyme
inhibitors. This time also saw the rise of high-throughput screening
and combinatorial chemistry along with complementary computa-
tional methods for de novo design and virtual screening including
docking. These technologies appeared poised to deliver diverse lead
compounds for any biological target. As with many technological
advances, realization of the expectations required significant addi-
tional effort and time. However, as summarized here, striking suc-
cess has now been achieved for computer-aided drug lead generation
and optimization.

De novo design using both molecular growing and docking are illustrated for lead generation, and lead optimization
features free energy perturbation calculations in conjunction with Monte Carlo statistical mechanics simulations for
protein-inhibitor complexes in aqueous solution. The specific applications are to the discovery of non-nucleoside inhibi-
tors of HIV reverse transcriptase (HIV-RT) and inhibitors of the binding of the proinflammatory cytokine MIF to its recep-
tor CD74. A standard protocol is presented that includes scans for possible additions of small substituents to a molecular
core, interchange of heterocycles, and focused optimization of substituents at one site. Initial leads with activities at low-
micromolar concentrations have been advanced rapidly to low-nanomolar inhibitors.

Introduction

This Account highlights recent advances in a core

activity for drug discovery, structure-based

design.1 The design is typically for small mole-

cules that bind to a biomolecular target and inhibit

its function, and the design process features build-

ing three-dimensional structures of complexes of

the small molecules with the target. Structure-

based design can be carried out with nothing

more than the target structure, which most often

comes from X-ray crystallography, and graphics

tools for placing small molecules in the proposed

binding site. However, additional insights provided

by evaluation of the molecular energetics for the

binding process are central to most current struc-

ture-based design activities. Some experiences

and issues that have been addressed in the devel-

opment and application of improved computa-

tional methodology for structure-based design are

summarized here. The principal activities are the

discovery of initial lead compounds, which show

some activity in an assay measuring biological

response, and their subsequent optimization to

obtain greater potency and pharmacologically

acceptable properties.

Lead Generation
Lead generation and optimization can be pursued

through joint computational and experimental

studies. As summarized in Figure 1, our approach

features two pathways for lead generation, de
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novo design with the ligand-growing program BOMB (Bio-

chemical and Organic Model Builder)2 and virtual screening

using the docking-program Glide.3 Fragment-based design,

which involves the docking and linking together of multiple

small molecules in a binding site, is another popular alterna-

tive.4 Desirable compounds from de novo design normally

have to be synthesized, while compounds from virtual screen-

ing of commercial catalogs are typically purchased. In both

cases, it is preferred to begin with a high-resolution crystal

structure for a complex of the target protein with a ligand.

Though the ligand is removed, it is not advisible to start from

an apo structure, which may have side chains repositioned to

fill partially the vacant binding site.

De Novo Design. BOMB is used to grow molecules by add-

ing layers of substituents to a core that is isolated or that has

been placed in a binding site.2 In one run, up to four hydro-

gen atoms can be replaced by new groups, L1-L4. Alterna-

tive “topologies” are used such that L1-L4 can replace

hydrogens in the core C or they may be linked together in dif-

ferent patterns, e.g., L2-L1-C-L3-L4 or C-L1-L2-L3-L4.

BOMB includes a library of ca. 700 possible substituents Li

including most common heterocycles and substituted phenyl

groups. The substituents are organized in groupings, Gi, such

as 5Het (five-membered ring heterocycles), 6Het, biHet, Ψ
(hydrophobic), 3PhX (meta-phenyl-X), OR, etc. The core C may

be as simple as, for example, ammonia or benzene, or it may

represent a polycyclic framework of a lead series. For a typi-

cal BOMB run, the user specifies the core, the topology, and

the Gi. These define a “template”, which is equivalent to a

combinatorial library, and all molecules corresponding to the

template are grown. The user generally picks a template

because it conforms to the geometry of the target binding site

and because the molecules are expected to be amenable to

synthesis. For each molecule that is grown, a thorough con-

formational search is performed. The dihedral angles for the

conformer are optimized along with its position and orienta-

tion in the binding site using the OPLS-AA force field for the

protein and OPLS/CM1A for the analogue.5 The resultant low-

est-energy conformer is evaluated with a docking-like scor-

ing function to predict activity.

In our search for non-nucleoside inhibitors of HIV reverse

transcriptase (NNRTIs), dozens of templates have been con-

sidered and ca. 105 molecules have been grown and evalu-

ated using BOMB. The NNRTI binding site is illustrated in

Figure 2; a striking feature is the array of aromatic residues,

Tyr181, Tyr188, Trp229, and Phe227, which form a “π-box”.

A secondary consideration is the polar feature of the carbo-

nyl group of Lys101, which is directed into the binding site.

All templates were designed to deliver an unsaturated hydro-

phobic group U into the π-box, and many also incorporate an

NH group to hydrogen bond with Lys101. A template that

yielded promising results is Het-NH-34Ph-U where Het repre-

sents a monocyclic heterocycle, and 34Ph is a 3- or 4-substi-

tuted phenyl group. The library was grown starting with

ammonia as the core, which was positioned to form a hydro-

gen bond with the carbonyl group of Lys101. In this topol-

ogy, the U group is delivered from the right in Figure 2.

Alternatively it could be delivered from the left, for example,

in a U-Het-NH-PhX or U-Het-OCH2CH2-Het series (vide infra). In

the example, there were ca. 50 Het and 50 U options, so the

program built ca. 2500 Het-NH-3-Ph-U and 2500 Het-NH-4-

Ph-U possibilities. This exercise resulted in identification of Het

) 2-thiazolyl and U ) dimethylallyloxy as a promising pair.

FIGURE 1. Schematic outline for structure-based lead discovery
and optimization.

FIGURE 2. Complex of HIV-RT with a non-nucleoside inhibitor
(NNRTI) built using BOMB. The hydrogen bond with the oxygen
atom of Lys101 is dashed.

Efficient Drug Lead Discovery and Optimization Jorgensen

Vol. 42, No. 6 June 2009 724-733 ACCOUNTS OF CHEMICAL RESEARCH 725

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

A
ST

R
IC

H
T

 o
n 

A
ug

us
t 2

9,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 M
ar

ch
 2

4,
 2

00
9 

| d
oi

: 1
0.

10
21

/a
r8

00
23

6t



It had a very low BOMB score, and upon full optimization, it

yielded a very favorable protein-ligand interaction energy

and no obvious liabilities. Subsequent synthesis of the thiaz-

ole 1 did provide a 10-µM lead using an MT-2 cell-based

assay for anti-HIV activity. As described below, this lead was

optimized to multiple highly potent NNRTIs including the tri-

azine derivative in Figure 2 (31 nM) and the 2-nM inhibitor

2.6-9

Some additional details should be noted. The host, typi-

cally a protein, is rigid in the BOMB optimizations except for

variation of terminal dihedral angles for side chains with

hydrogen-bonding groups. The current scoring function has

been trained to reproduce experimental activity data for more

than 300 complexes of HIV-RT, COX-2, FK506 binding pro-

tein, and p38 kinase.2 It yields a correlation coefficient r2 of

0.58 for the computed versus observed log(activities). The

scoring function only contains five descriptors, the most sig-

nificant of which is an estimate of the analogue’s octanol/wa-

ter partition coefficient from QikProp (QPlogP).10 This supports

the adage that increased hydrophobicity often leads to

increased binding. However, refinement for quality of fit is

needed using the host-ligand interaction energy or an index

of mismatched contacts. The results from BOMB include the

structures of the complexes and a spreadsheet with one row

for each analogue summarizing computed quantities includ-

ing host-analogue energy components, as well as predicted

properties from QikProp. The processing time per analogue is

typically 5-30 s depending on the number of conformers.

BOMB is also used to generate all input files for the subse-

quent, more rigorous free-energy perturbation (FEP) calcula-

tions that are used for lead optimization.

Virtual Screening. The common alternative to de novo
design is virtual screening of available compound collections

using docking software.1b Promising compounds are pur-

chased and assayed (Figure 1). Many reviews and compari-

sons for alternative software and scoring functions are

available.3,11-13 There have been numerous success stories,

though it is accepted that correct rank ordering of compounds

for activity is beyond the current capabilities. This is not sur-

prising in view of the thermodynamic complexity of host-
ligand binding including potential conformational changes for

both host and guest upon binding.14 A beneficial ancillary fea-

ture of docking large compound collections is that interest-

ing structural motifs often emerge as potential cores.

Our earliest docking effort did not yield active compounds,

though it suggested a lead series that produced potent anti-

HIV agents.2,15 A total of 70 000 compounds from the May-

bridge catalog plus 20 known NNRTIs were processed. After

initial filters and docking using Glide 3.5 with standard preci-

sion (SP),3 the top 500 compounds were redocked in extra-

precision (XP) mode.16 The top 100 of these were postscored

with an MM-GB/SA method that provided high correlation

between predicted and observed activities.15 Though known

NNRTIs were retrieved well, assaying of ca. 20 high-scoring

compounds failed to yield any actives. The highest-ranked

library compound, the inactive oxadiazole 3, seemed to have

a viable core and was pursued. The ring substituents were

removed and a set of small substituents was reintroduced in

place of each hydrogen using BOMB; scoring with BOMB, fol-

lowed by FEP-guided optimization, led to synthesis and assay-

ing of several polychloro analogues with EC50 values as low

as 310 nM in the MT-2 cell assay.2 Further cycles of FEP-

guided optimization led to novel, very potent NNRTIs includ-

ing the oxazole derivative 4, as described more below.17

A more recent virtual screening exercise was strikingly suc-

cessful.18 New protocols had evolved including use of the

much larger ZINC database of ca. 2.1 million commercial com-

pounds.19 The goal was to disrupt the binding of MIF (mac-

rophage migration inhibitory factor) to its receptor CD74. MIF

is a cytokine, which is viewed to play a key role in inflamma-

tory diseases and cancer.20,21 Curiously, MIF is also a

keto-enol isomerase, and the interaction of MIF with CD74

seems to occur in the vicinity of the tautomerase active site.

The docking was performed using Glide 4.0 and the 1gcz crys-

tal structure of a complex of MIF. In addition to the ZINC col-

lection, the Maybridge HitFinder library was screened, which

provided an additional 24 000 compounds. After processing

with SP Glide, the top-ranked 40 000 compounds from ZINC

and 1000 from Maybridge were redocked in XP mode.16 The

large ZINC collection yielded hundreds of compounds with XP

scores lower than those for any Maybridge compounds. The

average molecular weights for the top 1000 ZINC and May-
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bridge compounds were both near 310, so the improved per-

formance with ZINC results from greater structural variety.

Finally, the Glide poses for ca. 1200 of the top-ranked com-

pounds were displayed, and 34 compounds were selected.

Only 24 were actually available for purchase, and 23 com-

pounds were ultimately submitted to a MIF-CD74 binding

assay. Remarkably, 11 of the compounds inhibited the

protein-protein association in the micromolar regime includ-

ing four compounds with IC50 values below 5 µM. Inhibition

of MIF tautomerase activity was also established for many of

the compounds with IC50 values as low as 0.5 µM (Figure 3).

Optimization of several of the lead series is well along. It is

expected that contributors to the success with the virtual

screening in this case were improvements with the XP scor-

ing, use of the large ZINC library, and the relatively small bind-

ing site and consequently small number of rotatable bonds for

potential inhibitors. In view of the sensitivity of activity to

structure, for example, 1-4, it is unlikely that active com-

pounds can be found in small libraries unless the assays can

be run at high concentration. Even with a viable core, the

chance is low that a small library will contain a derivative with

a viable substituent pattern.

ADME Analyses
As leads are pursued, consideration of potential pharmaco-

logical liabilities is important. The issue became increasingly

salient in the 1990s owing to high failure rates for compounds

in clinical trials that could be ascribed to ADME (absorption,

distribution, metabolism, excretion) and toxicity problems.22

Recognition arose that compounds developed in the post-HTS

era were tending to be larger and more hydrophobic, which

are accompanied by solubility and bioavailability deficien-

cies.23 Consequently, more effort was placed on quantitative

prediction of molecular properties beyond log Po/w using sta-

tistical procedures, which are trained on experimental

data.24,25

In Figure 1, the choice for ADME analyses is QikProp, which

was among the earliest programs that predicted a substan-

tial array of pharmacologically relevant properties. Version 1.0

from March 2000 provided predictions for intrinsic aqueous

solubility, Caco-2 cell permeability, and several partition coef-

ficients including octanol/water. The input for QikProp is a

three-dimensional molecular structure, and it mostly uses lin-

ear regression equations with descriptors such as surface areas

and hydrogen-bond donor and acceptor counts. By version

3.0 from 2006, the output covered 18 quantities including log

BB for brain/blood partitioning, log Khsa for serum albumin

binding, and primary metabolites.10 Execution time is negli-

gible since the most time-consuming computation is for the

molecule’s surface area.

In order to gauge acceptable ranges of predicted proper-

ties, QikProp 3.0 was used to process ca. 1700 known, neu-

tral oral drugs.8,26 Consistent with the log Po/w limit of 5 in

Lipinski’s rules,23 91% of oral drugs are found to have QPlogP

values below 5.0. For aqueous solubility, 90% of the QPlogS

values are above -5.7, that is, S is greater than 1 µM. The

QikProp results also state that 90% of oral drugs have cell per-

meabilities, PCaco, above 22 nm/s and no more than six pri-

mary metabolites. These quantities address important

components of bioavailablility, namely, solubility, cell perme-

ability, and metabolism. For the purposes of Figure 1, a com-

pound is viewed as potentially problematic if it does not

satisfy a “rule-of-three”: predicted log S > -6, PCaco > 30

nm/s, and maximum number of primary metabolites of six.

For activity requiring blood-brain barrier penetration, the pre-

dicted log BB should also be positive. There are exceptions to

FIGURE 3. Diverse inhibitors (left) of MIF discovered by docking, purchase, and assaying and computed image (right) of the
benzoisothiazolone, a 4-µM tautomerase inhibitor, bound to MIF. Binding features aryl-aryl interactions and hydrogen bonding.
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such rules; however, it would be imprudent to ignore prop-

erty distributions for known drugs.

Lead Optimization
It is assumed that inhibitory potency increases with increas-

ing biomolecule-inhibitor binding. So, on the computa-

tional side, the key for lead optimization is accurate

prediction of biomolecule-ligand binding affinities.11 There

are many approaches, but the potentially most accurate

ones are the most rigorous.1,11 Currently, the best that is

done is to model the complexes in the presence of hun-

dreds or thousands of explicit water molecules using Monte

Carlo statistical mechanics (MC)27 or molecular dynamics

(Figure 4). Classical force fields5 are used, and extensive

sampling is performed for key external and internal degrees

of freedom for the complexes, solvent, and any counter-

ions. FEP and thermodynamic integration (TI) calculations

then provide formally rigorous means to compute free-en-

ergy changes.28,29 For biomolecule-ligand affinities, per-

turbations are made to convert one ligand to another using

the thermodynamic cycle in Figure 4. The conversions

involve a coupling parameter that causes one molecule to

be smoothly mutated to the other.30 The difference in free

energies of binding for the ligands X and Y then comes

from ∆∆Gb ) ∆GX - ∆GY ) ∆GF - ∆GC. Two series of

mutations are performed to convert X to Y unbound in

water and complexed to the biomolecule, which yield ∆GF

and ∆GC.

Absolute free energies of binding are not obtained, but for

lead optimization, it is sufficient to assess the effects of mak-

ing changes or additions to a core structure in the same spirit

as synthetic modifications. Though the FEP or TI calculations

are rigorous, their accuracy is affected by many issues includ-

ing the quality of the force fields, missing polarization effects,

and possibly inadequate configurational sampling associated

with infrequent conformational changes. The idea of using

such calculations for molecular design goes back at least to

the mid-1980s in reports of the first FEP calculation for con-

version of a molecule X to molecule Y30 and of the first FEP

calculations for protein-ligand binding.31 A final comment

from McCammon’s review on “Computer-aided molecular

design” in Science in 1987 was perspicacious: “The attentive

reader will have noticed that no molecules were actually

designed in the work described here.”32 The situation

remained basically unchanged for almost 20 years. As the

convergence of FEP calculations was investigated, it was

apparent that they were too computationally intensive for rou-

tine use given the computer resources available before ca.

2000.

Thus, until recently, FEP and TI calculations on protein-
ligand systems predominantly addressed reproduction of

known experimental data for small numbers of inhibitors. Koll-

man was a strong advocate of the potential of free-energy cal-

culations for molecular design, and Merz and he did report a

rare prospective FEP result on the binding of an inhibitor to

thermolysin.33 Pearlman also advanced the technology,

though recent publications were still retrospective and con-

fined to a simple congeneric series of 16 kinase inhibitors.34

In addition, Reddy and Erion have used FEP calculations to

evaluate contributions of heteroatoms and small groups to

binding.35 Our own computations on protein-ligand binding

began to appear in 1997 using MC/FEP methodology.36 Many

topics were subsequently addressed including substituent opti-

mization,37 COX-2/COX-1 selectivity,38 heterocycle optimiza-

tion,39 and the effects of HIV-RT mutations on the activities of

NNRTIs.40-43 It should be noted that others and we have tried

more approximate procedures such as linear response and

MM/GBSA, but they have not proven to be accurate enough

to direct lead optimization.1a,15,34

FEP-Guided Optimization of Azines as NNRTIs. With

this preparation, large increases in computer resources, the hir-

ing of synthetic chemists, and collaboration with biologists,

FEP-guided lead optimization projects were initiated. Early suc-

cess in the optimization of NNRTIs is reflected by the progres-

sion from 1 to 2 in the Het-NH-3-Ph-U series.6-8 MC/FEP

calculations were used initially to optimize the heterocycle and

the substituent X in the phenyl ring. This quickly led to selec-

tion of 2-pyrimidinyl and 2-(1,3,5)-triazinyl for the heterocy-

cle and chlorine or a cyano group for X. More than 10

alternatives for the U group, which scored well with BOMB,

were also considered. In this case, synthesis of the alterna-

tives was relatively straightforward and dimethylallyloxy

FIGURE 4. A protein-ligand complex (left) in a water droplet
(typically, the ligand, 200-300 nearby residues, and 1000 water
molecules are modeled) and thermodynamic cycle (right) for
relative free energies of binding. P is the receptor, and X and Y are
two ligands.
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emerged as optimal.6,7 These combinations yielded NNRTIs

with EC50 values near 200 nM.

The next step was optimization of substituents R for the

heterocycle.8 For the 2-substituted-pyrimidines, the immedi-

ate question was would 4,6-disubstitution be favorable or

would monosubstitution at either position be preferred. In

complexes with HIV-RT, the 4- and 6-positions are not equiv-

alent; for example, in Figure 2, the methoxy group could be

directed toward the viewer (“out”) or away (“in”), as shown.

From display of modeled complexes, the preferences were not

obvious. This was clarified by MC/FEP results, which strongly

favored a single small substituent on the pyrimidine ring ori-

ented “in”. Synthesis of such substituted pyrimidines and tri-

azines yielded many NNRTIs with EC50 values below 20

nM.6-8 There was good correlation between the FEP results

and the observed activities.6,8 The methoxy-substituted pyri-

midine 2 is the most potent, though it is also relatively cyto-

toxic (CC50 ) 230 nM). The corresponding 1,3,5-triazine

derivative is also potent (11 nM) and has a large safety mar-

gin (CC50 ) 42 µM).8 Its p-chloro analogue (31 nM) is depicted

in Figure 2.

Heterocycle Scans. In the initial optimization of the het-

erocycle, both five- and six-membered rings were considered,

and FEP calculations provided ∆∆Gb for six alternatives in both

cases.6 This process can be referred to as a heterocycle scan.

It pointed to 2-pyrimidinyl as optimal in the six-membered

series and 2-thiazolyl, 4-1,2,3-(1H)triazolyl, and 2-oxazolyl as

the best five-membered choices. The latter two alternatives

were less synthetically accessible and were not pursued; how-

ever, synthesis and assaying of several of the six-membered

options confirmed the predicted preference for 2-pyrimidi-

nyl.6

FEP results also established the orientation of the meth-

oxy methyl group in the pyrimidine and triazine derivatives to

be as shown in Figure 2, that is, pointing toward Phe227

rather than Tyr181. This knowledge then suggested cycliza-

tion of the methoxy group back into the azine ring to form

fused heterocycles:

Analogues with 6-5 fused rings were pursued, driven by

the prospective FEP results in Figure 5. Synthesis and assay-

ing of six of the compounds showed close parallel between

the predicted and observed activities.9 The illustrated furan-

opyrimidine derivative was predicted and observed to be the

most potent; it is a highly novel 5-nM NNRTI. The results high-

light the accuracy of the FEP predictions and again the sensi-

tivity of activity to structure. The pyrrolopyrimidine (130 nM)

and pyrrolopyrazine (19 nM) pair is particularly striking. After

the fact, analyses revealed more negative charge on the

pyrazinyl nitrogen leading to stronger hydrogen bonding with

the backbone of Lys101.9 Clearly, a computational heterocy-

cle scan can be a powerful, time-saving lead-optimization

tool.39 There are many options, and the synthetic challenges

can be great. In the example, heteroaryl halides were needed

for reaction with substituted anilines; several were not previ-

ously reported and required considerable synthetic effort.9

Changing heterocycles in the center of a structure can be

particularly difficult. For example, synthesis of 3 and 4
requires fundamentally different procedures for the ring con-

struction.17 Such changes in chemotype can lead to a signif-

icant delay as a viable synthetic route is found for the new

target. In the case of this U-5Het-NH-4PhX series, an FEP scan

was carried out for 11 alternative five-membered-ring hetero-

cycles by perturbation from the corresponding thiophene.17

Remarkably, the only one that was predicted to be more

active than the oxadiazole was the 2,5-disubstituted-oxazole.

The prediction was confirmed and provided a major step for-

ward (Figure 6). It is noted that the ca. 8-fold activity improve-

ment, which corresponds to a ∆∆G of 1.2 kcal/mol, is less

than the computed ∆∆G of 2.5 kcal/mol. This is a common

pattern that likely stems from the use of a cell-based assay

and the lack of explicit polarization effects in the FEP

calculations.

In view of the synthetic challenges, only two alternatives

were prepared, the thiadiazole and thiazole analogues, which

were both predicted and found to be inactive (Figure 6).

Graphical display of modeled complexes is inadequate to

gauge relative potency. In retrospect, the results indicate that

the longer C-S bonds in the 2,5-disubstituted sulfur-contain-

ing heterocycles cause crowding of the dichlorobenzyl group

and Tyr181, and the nitrogen in the 4-position has an elec-

trostatically unfavorable interaction with Glu138.

Small Group Scans. Small group scans are also highly

informative. A standard protocol with BOMB is to replace each

hydrogen of a core, especially aryl hydrogens, with 10 small

groups that have been selected for difference in size, elec-
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tronic character, and hydrogen-bonding patterns: Cl, CH3,

OCH3, OH, CH2NH2, CH2OH, CHO, CN, NH2, and NHCH3. This

is generally adequate to define likely places for beneficial sub-

stitution of hydrogen by the first three groups. The situation

with the polar groups is less clear owing to the competition for

the ligand between hydrogen bonding in the complex ver-

sus unbound in water. As long as some substitutions appear

promising, a chlorine or methyl scan or both using FEP calcu-

lations is then desirable to obtain quantitatively reliable pre-

dictions. The value of using both a chlorine and methyl scan

is well illustrated in Figure 7; knowing the optimal position for

the two groups provides an activity boost from 30 µM to 39

nM in this case.6-8

A chlorine scan was also particularly helpful in evolving the

inactive oxadiazole 3 into potent anti-HIV agents. The oxa-

diazole emerged in third place after the docking exercise,

embedded among known, potent NNRTIs. The docking pose

looked reasonable, though the score from BOMB was mod-

est owing to poor accommodation of the methoxy groups in

the vicinity of Tyr181 and Tyr188. Assuming that the tricy-

clic core might be viable, the substituents were removed and

a chlorine scan was performed using MC/FEP simulations.2,17

The predicted changes in free energy of binding for replac-

ing each hydrogen by chlorine are summarized in Figure 8;

again formally equivalent positions become nonequivalent in

the complexes. The scan indicated that the most favorable

positions for chlorines were at C3 and C4 in the phenyl ring

and at C2 and C6 in the benzyl ring. A series of polychloro

analogues were then synthesized, and the activities were

found to closely parallel the predictions. The core and, for

example, the 4,4′-dichloro analogue 5 were inactive; how-

ever, the trichloro and tetrachloro analogues 6-8 followed the

FEP expectations and yielded sub-micromolar NNRTIs. Thus,

with the aid of the FEP chlorine scan, it was possible to evolve

the false positive from the docking calculations into true

positives.2,17

Small Group and Linker Refinement. Given the posi-

tive outcome of chlorine and methyl scans, it is natural to con-

sider further optimization at the replacement sites. This has

been FEP-guided several times, for example, in the optimiza-

tion of the substituent in the pyrimidine ring and at the 4-po-

sition in the phenyl ring for the Het-NH-3-Ph-U compounds as

in 2.6-8,17 More recent examples occurred with the azoles. For

FIGURE 5. Heterocycle scan in the biHet-NH-3-Ph-U series with FEP results for relative ∆Gb (kcal/mol) and experimental anti-HIV activities
(nM).

FIGURE 6. Heterocycle scan in the U-5Het-NH-4PhX series with FEP
results for ∆Gb (kcal/mol) relative to the thiophene analogue and
experimental anti-HIV activity.
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9, FEP calculations were performed and predicted ∆∆Gb val-

ues in kcal/mol for X ) H (0.0), CH2CH3 (-0.3), CH3 (-1.6),

CH2OCH3 (-1.7), OCH3 (-1.8), CF3 (-2.2), F (-2.3), Cl (-4.0),

and CN (-5.2). The X ) CH3, CH2OCH3, Cl, and CN analogues

were synthesized, and the assay results of EC50 values of 4, 4,

0.8, and 0.1 µM, respectively, conformed well to the expec-

tations.17 The enhanced activity of the cyano derivatives

appears to result from favorable ion-dipole interactions with

a proximal protonated histidine residue and from strengthen-

ing the hydrogen bond between the para amino group and

the backbone carbonyl group of Lys101.

FEP-guided optimization of the linker Y between the oxa-

diazole and dichlorophenyl rings in 10 was also pursued. The

options considered were Y ) CH2, (R)-CHCH3, (S)-CHCH3, NH,

NCH3, O, and S. Though displays of the corresponding com-

plexes appear reasonable, the FEP predictions for modifica-

tion of the methylene group were all unfavorable except for

minor improvement for the methylamino (-1.6) and thio

(-1.4) alternatives. The Y ) NH and racemic CHCH3 ana-

logues were synthesized and indeed found to be less active

than the methylene compound; the methylamino compound

turned out to have similar activity (0.2 µM) as the methylene

analogue (0.1 µM) with X ) CN, and the oxo and thio options

were not pursued.

As a last thrust, FEP calculations were performed for possi-

ble replacement of the oxazole C4 hydrogen in 11 by R ) F,

Et, Me, CF3, and CH2OH. The five analogs were predicted to be

less well bound than the unsubstituted compound (4) by 0.8,

1.5, 1.8, 2.2, and 3.9 kcal/mol, respectively. Visual inspec-

tions of modeled structures were, once more, ambiguous. The

qualitative FEP result was confirmed experimentally for the

C4-methyl derivative, which was found to be 7-fold less potent

than 4. The other options were not further pursued.

In summary, starting from the inactive “lead” 3, combina-

tion of the FEP-based chlorine scan, heterocycle scan, and

small substituent and linker optimizations delivered 4, a novel

13-nM NNRTI (Figure 8).17 This case illustrates how a molec-

ular template can be thoroughly scrutinized with FEP calcula-

tions. A general protocol is summarized in Figure 1. De novo
design or virtual screening can usually provide one or more

lead compounds with low-micromolar activity. The substitu-

ents in the lead are likely not optimal. Consequently, removal

of any small substituents from the core followed by chlorine

and methyl FEP scans are desirable. Synthesis and assaying of

the most promising di- or trisubstituted compounds from the

scans can provide significant activity improvements, as in Fig-

ure 7. FEP-guided refinement of the small substituents, link-

ers, and heterocycles is the logical next step.

As an ongoing example, the MIF lead featured in Figure 3

is being optimized. Chlorine, methyl, and small group scans

have been performed to optimize the substituents for the

N-phenyl-benzoisothiazolone, synthesis of an initial round of

analogues based on these results is near completion, and per-

turbation of the five-ring heterocycle to 11 alternatives is

underway. Concerning computer time, for the typical pertur-

bations considered here, one ∆∆Gb result can be obtained in

one week using one 3-GHz Pentium processor, or by running

the FEP windows in parallel, one ∆∆Gb result can be obtained

in one day using 12 processors.29 With moderate computer

resources, the bottleneck in lead optimization is the synthetic

chemistry.

Conclusion
Great progress has been made in the development and appli-

cation of methodology to facilitate both drug lead genera-

FIGURE 7. The power of chlorine and methyl scans: experimental EC50 values for anti-HIV activity.

FIGURE 8. FEP-computed changes (left) in ∆Gb (kcal/mol) for
replacement of the indicted hydrogens by chlorine and snapshot
(right) of the complex of 4 bound to HIV-RT from MC/FEP
simulations.
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tion and lead optimization. Computational chemistry has

contributed significantly through advances in de novo design,

virtual screening, prediction of pharmacologically important

properties, and the estimation of protein-ligand binding affin-

ities. Docking of large commercial and in-house libraries is

now an essential approach for structure-based lead genera-

tion. Furthermore, as summarized here, the long-standing

promise of the utility of free-energy calculations for molecu-

lar design has been fulfilled. The methodology allows broad

exploration of the effects of potential modifications to a com-

pound without immediate need for synthesis and without con-

ceptual constraints associated with ease of synthesis.

Depending on the outcome, synthetic and biological resources

can be focused in the most promising directions. In view of the

ever-pressing needs for efficiency, free-energy guided molec-

ular design can be expected to become a mainstream activ-

ity in many contexts.
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